Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons.
نویسندگان
چکیده
Neocortical layer 5 pyramidal neurons possess long apical dendrites that receive a significant portion of the neurons excitatory synaptic input. Passive neuronal models indicate that the time course of excitatory postsynaptic potentials (EPSPs) generated in the apical dendrite will be prolonged as they propagate toward the soma. EPSP propagation may, however, be influenced by the recruitment of dendritic voltage-activated channels. Here we investigate the properties and distribution of I(h) channels in the axon, soma, and apical dendrites of neocortical layer 5 pyramidal neurons, and their effect on EPSP time course. We find a linear increase (9 pA/100 microm) in the density of dendritic I(h) channels with distance from soma. This nonuniform distribution of I(h) channels generates site independence of EPSP time course, such that the half-width at the soma of distally generated EPSPs (up to 435 microm from soma) was similar to somatically generated EPSPs. As a corollary, a normalization of temporal summation of EPSPs was observed. The site independence of somatic EPSP time course was found to collapse after pharmacological blockade of I(h) channels, revealing pronounced temporal summation of distally generated EPSPs, which could be further enhanced by TTX-sensitive sodium channels. These data indicate that an increasing density of apical dendritic I(h) channels mitigates the influence of cable filtering on somatic EPSP time course and temporal summation in neocortical layer 5 pyramidal neurons.
منابع مشابه
Time course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus
Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...
متن کاملTime course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus
Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...
متن کاملVoltage- and site-dependent control of the somatic impact of dendritic IPSPs.
Inhibitory interneurons target specific subcellular compartments of cortical pyramidal neurons, where location-specific interactions of IPSPs with voltage-activated ion channels are likely to influence the inhibitory control of neuronal output. To investigate this, we simulated IPSPs as a conductance source at sites across the somato-apical dendritic axis (up to 750 microm) of neocortical layer...
متن کاملDependence of EPSP efficacy on synapse location in neocortical pyramidal neurons.
Neurons receive thousands of synaptic inputs throughout elaborate dendritic trees. Here we determine the somatic impact of excitatory postsynaptic potentials (EPSPs) generated at known dendritic sites in neocortical pyramidal neurons. As inputs became more distal, somatic EPSP amplitude decreased, whereas use-dependent depression increased. Despite marked attenuation (>40-fold), when coactivate...
متن کاملLocal and global effects of I(h) distribution in dendrites of mammalian neurons.
The hyperpolarization-activated cation current I(h) exhibits a steep gradient of channel density in dendrites of pyramidal neurons, which is associated with location independence of temporal summation of EPSPs at the soma. In striking contrast, here we show by using dendritic patch-clamp recordings that in cerebellar Purkinje cells, the principal neurons of the cerebellar cortex, I(h) exhibits ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 83 5 شماره
صفحات -
تاریخ انتشار 2000